Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1381122.v1

ABSTRACT

Population antibody response is believed to be important in selection of new variant viruses. We identified that SARS-CoV-2 infections elicit a population immune response mediated by a lineage of VH1-69 germline antibodies. The representative antibody R1-32 targets a novel semi-cryptic epitope defining a new class of RBD targeting antibodies. Binding to this non-ACE2 competing epitope leading to spike destruction impairing virus entry. Based on epitope location, neutralization mechanism and analysis of antibody binding to spike variants we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of this population antibody response. These substitutions, including L452R found in the Delta variant, disrupt interaction mediated by the VH1-69 specific hydrophobic HCDR2 to impair antibody-antigen association allowing variants to escape. Lacking 452/490 substitutions, the Omicron variant is sensitive to this class of antibodies. Our results provide new insights into SARS-CoV-2 variant genesis and immune evasion.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.434733

ABSTRACT

The spike protein (S) of SARS-CoV-2 has been observed in three distinct pre-fusion conformations: locked, closed and open. Of these, the locked conformation was not previously observed for SARS-CoV-1 S and its function remains poorly understood. Here we engineered a SARS-CoV-2 S protein construct "S-R/x3" to arrest SARS-CoV-2 spikes in the locked conformation by a disulfide bond. Using this construct we determined high-resolution structures revealing two distinct locked states, with or without the D614G substitution that has become fixed in the globally circulating SARS-CoV-2 strains. The D614G mutation induces a structural change in domain D from locked-1 to locked-2 conformation to alter spike dynamics, promoting transition into the closed conformation from which opening of the receptor binding domain is permitted. The transition from locked to closed conformations is additionally promoted by a change from low to neutral pH. We propose that the locked conformations of S are present in the acidic cellular compartments where virus is assembled and egresses. In this model, release of the virion into the neutral pH extracellular space would favour transition to the closed form which itself can stochastically transition into the open form. The S-R/x3 construct provides a tool for the further structural and functional characterization of the locked conformations of S, as well as how sequence changes might alter S assembly and regulation of receptor binding domain dynamics.


Subject(s)
Severe Acute Respiratory Syndrome
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.360479

ABSTRACT

Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 205 COVID-19 patients and controls to create a comprehensive immune landscape. Lymphopenia and active T and B cell responses were found to coexist and associated with age, sex and their interactions with COVID-19. Diverse epithelial and immune cell types were observed to be virus-positive and showed dramatic transcriptomic changes. Elevation of ANXA1 and S100A9 in virus-positive squamous epithelial cells may enable the initiation of neutrophil and macrophage responses via the ANXA1-FPR1 and S100A8/9-TLR4 axes. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and designing effective therapeutic strategies for COVID-19.


Subject(s)
Carcinoma, Squamous Cell , COVID-19 , Lymphopenia
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.361261

ABSTRACT

The recent COVID-19 pandemic has brought about a surge of crowd-sourced initiatives aimed at simulating the proteins of the SARS-CoV-2 virus. A bottleneck currently exists in translating these simulations into tangible predictions that can be leveraged for pharmacological studies. Here we report on extensive electrostatic calculations done on an exascale simulation of the opening of the SARS-CoV-2 spike protein, performed by the Folding@home initiative. We compute the electric potential as the solution of the non-linear Poisson-Boltzmann equation using a parallel sharp numerical solver. The inherent multiple length scales present in the geometry and solution are reproduced using highly adaptive Octree grids. We analyze our results focusing on the electro-geometric properties of the receptor-binding domain and its vicinity. This work paves the way for a new class of hybrid computational and data-enabled approaches, where molecular dynamics simulations are combined with continuum modeling to produce high-fidelity computational measurements serving as a basis for protein bio-mechanism investigations.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.27.174979

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions are surrounded by a lipid bilayer from which spike (S) protein trimers protrude. Heavily glycosylated S trimers bind the ACE2 receptor and mediate entry of virions into target cells. S exhibits extensive conformational flexibility: it modulates the exposure of its receptor binding site and later undergoes complete structural rearrangement to drive fusion of viral and cellular membranes. The structures and conformations of soluble, overexpressed, purified S proteins have been studied in detail using cryo-electron microscopy. The structure and distribution of S on the virion surface, however, has not been characterised. Here we applied cryo-electron microscopy and tomography to image intact SARS-CoV-2 virions, determining the high-resolution structure, conformational flexibility and distributions of S trimers in situ on the virion surface. These results provide a basis for understanding the conformations of S present on the virion, and for studying their interactions with neutralizing antibodies.

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.15.152835

ABSTRACT

The spike (S) protein of SARS-CoV-2 mediates receptor binding and cell entry and is the dominant target of the immune system. S exhibits substantial conformational flexibility. It transitions from closed to open conformations to expose its receptor binding site, and subsequently from prefusion to postfusion conformations to mediate fusion of viral and cellular membranes. S protein derivatives are components of vaccine candidates and diagnostic assays, as well as tools for research into the biology and immunology of SARS-CoV-2. Here we have designed mutations in S which allow production of thermostable, crosslinked, S protein trimers that are trapped in the closed, pre-fusion, state. We have determined the structures of crosslinked and non-crosslinked proteins, identifying two distinct closed conformations of the S trimer. We demonstrate that the designed, thermostable, closed S trimer can be used in serological assays. This protein has potential applications as a reagent for serology, virology and as an immunogen.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.08.029769

ABSTRACT

ABSTRACTDespite the current devastation of the COVID-19 pandemic, several recent studies have suggested that the immunosuppressive drug Tocilizumab can powerfully treating inflammatory responses that occur in this disease. Here, by employing single-cell analysis of the immune cell composition of severe-stage COVID-19 patients and these same patients in post Tocilizumab-treatment remission, we have identified a monocyte subpopulation specific to severe disease that contributes to inflammatory storms in COVID-19 patients. Although Tocilizumab treatment attenuated the strong inflammatory immune response, we found that immune cells including plasma B cells and CD8+ T cells still exhibited an intense humoral and cell-mediated anti-virus immune response in COVID-19 patients after Tocilizumab treatment. Thus, in addition to providing a rich, very high-resolution data resource about the immune cell distribution at multiple stages of the COVID-19 disease, our work both helps explain Tocilizumab’s powerful therapeutic effects and defines a large number of potential new drug targets related to inflammatory storms.Competing Interest StatementJingwen Fang is the executive officer of HanGen BiotechView Full Text


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL